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Abs t r ac t - -T he  pat terns  of  de formed  early l ineations (L~) over later folds (F:) can be classified into several 
morphological  types depending  on the  nature  of variation of L] / \  F: over the folds. The  field relations indicate 
that the folds under  considerat ion are nei ther  shear  folds nor  parallel folds modified by flattening. The  lineation 
pat terns  are therefore  interpreted in te rms  of an empirical model  of s imul taneous  buckling and flattening in which 
it is a s sumed  that (i) the  central surface of the folded layer remains  a sine curve in t ransverse profile. (ii) the ratio 
of rates of buckle shor tening to h o m o g e n e o u s  strain is proport ional  to sin 2~, with a as the  dip angle and (iii) the 
progressive deformat ion is coaxial with the Z-axis of  bulk strain parallel to the planar  segments  of the early folds. 
The  model  gives an insight into the relative impor tance  of different physical factors which control the 
deve lopment  of dissimilar l ineation pat terns .  Not all l ineation pat terns  are explicable by this simplified model.  
Thus  complex pat terns  with variable L] /~ F_, along the fold axis may  develop by a progressive rotation of the 
geometrically defined fold hinge through successive material  lines. The  theoretical results have been applied to 
interpret  the lineation pat terns  in Central  Ra jas than ,  India. It is concluded that L~ was initially very close to the 
E - E S E  t rending subhorizontal  Z-axis of bulk deformat ion dur ing F:-folding and that the X-axis was sub- 
horizontal or gently plunging with a N - N N E  trend.  

INTRODUCTION 

EARLY lineations (say L~) which can be straightened out 
by unrolling the later folds (say F2) are common in areas 
of superposed deformations. Such unroUable early linea- 
tions indicate that the later folds had developed by 
flexural slip. Moreover, when the later folds are 
diversely oriented, the initial orientation of L 1 can be 
determined from the intersection of lineation loci (Ram- 
say 1967, p. 549). Lineations which remain curvilinear 
when the fold is unrolled are much more difficult to 
utilize in a structural analysis, since the development of 
a specific type of the lineation pattern is controlled by a 
large number of factors. Ramsay (1960, 1967) has con- 
sidered several circumstances in which the angle be- 
tween L~ and the F: axis could vary over the same fold 
and this analysis was further extended by Hudleston 
(1973a, pp. 126-130). 

A systematic morphological classification of deformed 
lineation patterns was made by Mukhopadhyay & 
Ghosh (1980) who recognized three principal types of 
deformed L1 lineation. The classification was based on 
whether the acute angle between L 1 and the F2 axis does 
or does not open in the same sense on the two limbs of 
F2. whether L1 /~ F, is constant or variable and whether 
the lineation does or does not lie on a plane. The 
notation "L1 /~ F~" will be used throughout to refer to the 
angle between L1 and the axis of F,. 

Representation of deformed L~ and recognition of 
dissimilar lineation patterns are most conveniently done 
when, along with the plots of L~ and ~ axes in equal-area 
projection, the pattern of deformed L~ is represented in 
a plane obtained by unrolling the form surface of F2. The 
latter pattern can be directly obtained by placing a 

transparent overlay on the mesoscopic folds and drawing 
the lineation on it. The lineation patterns of several folds 
drawn on such transparent overlays have been described 
by Naha & Halyburton (1977a). 

The pattern of a deformed L1 over F 2 is controlled 
essentially by (1) the competence contrast of the 
associated rocks, (2) the initial orientation of the planar 
segment of F~ on which L~ lies, (3) the initial angle 
between L1 and F 2 and (4) the nature and intensity of 
bulk deformation. The planar segment may either be the 
F 1 axial plane cleavage or a small segment of the form 
surface of a tight F~ fold. In the following analysis we 
make an attempt to find out whether the lineation 
patterns can give us significant information about the 
controlling physical factors. 

The present investigation started with an analysis of 
patterns of deformed early lineatiohs over a large 
number of mesoscopic folds in Central Rajasthan and in 
certain selected localities of Bihar and Karnataka, India. 
We found that the morphological classification of 
Mukhopadhyay & Ghosh (1980) can be considerably 
enlarged. In the following analysis we present in turn (i) 
the structural background of superposed deformation in 
Central Rajasthan, (ii) a general morphological classifi- 
cation of lineation patterns, (iii) a theoretical model of 
folding of Ll by simultaneous external rotation and 
flattening, (iv) an analysis of the lineation patterns 
obtained by numerical calculations from the theoretical 
model, (v) an interpretation of complex patterns, includ- 
ing curved lineations on a planar surface and (vi) an 
application of the theoretical results to interpret the 
lineation patterns in Central Rajasthan. The major part 
of the mathematical development of the model is given 
in the Appendix. 
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SUPERPOSED DEFORMATIONS IN CENTRAL 
RAJASTHAN 

The Precambrian gneisses and schists belonging to the 
Banded Gneissic Complex and the Aravalli Supergroup 
of Central Rajasthan, India, show a well-developed 
lineation parallel to the axis of early isoclinal folds (F1). 
The lineation which appears either as a mineral lineation 
or as a striping in migmatites, mica schists, quartzites, 
amphibolites, marbles and calc-schists, has been 
deformed during the development  of later upright folds 
(F2). The complex shapes of the folds resulting from 
superposition of F~ and F 2 have been subjected to 
detailed analysis by Naha and others (Naha & Halybur-  
ton 1977a,b, Naha 1983, Roy & Jain 1974, Roy et al. 
1981). These analyses show that although in detail their 
axial surfaces and hinges show large variations in 
attitude, the early folds have an overall E - E S E  trend 
and are reclined in most places. In contrast the F2 axial 
surfaces show a small range of variation in attitude; they 
are usually subvertical with a N - N N E  strike. As a result, 
the F2 fold hinges show a more or less uniform trend but 
a large range in plunge. It may be noted that the folds 
under consideration do not occur in shear zones; more- 
over,  as shown below, they are not passive folds. Hence ,  
the consistently upright character  of the folds over a very 
large area and the constancy in orientat ion of their axial 
planes, irrespective of the variation in tightness of the F2 
folds, would indicate that the bulk deformation during 
the development  of F 2 was by and large coaxial with the 
Z-axis subhorizontal and trending E - E S E .  

The mesoscopic F 2 folds are often disharmonic and 
with larger folds developing on thicker units. The plots 
of t" (Ramsay 1967) against a and of ~b~ (Hudleston 
1973b) against a of a large number  of folds by Naha & 
Halyburton (1977a & b) show that the majority of folds 
belong to 1B, 1C or Class 3 of Ramsay. Our  observations 
show that the most common mesoscopic folds in all the 
stratigraphic units show a combination of Class 1C and 
Class 3 types in alternating competent  and incompetent  
units. Again, the early lineation in competent  units often 
shows a small circle pattern of distribution (Naha & 
Halyburton 1977a, p. 101, Mukhopadhyay & Ghosh 
1980). All these features indicate that F2 had developed 
by buckling. From the Fatehpur  area of Rajasthan, 
Mukhopadhyay & Ghosh (1980) have given additional 
evidence for rejecting the shear folding mechanism for 
the development  of F2. They have shown that the 
geometrical configuration of the assumed 'a '  directions 
gives results quite incompatible with the model of shear 
folding. Evidently the patterns of non-unroilable early 
lineations have to be explained by some mechanism 
other  than shear folding. 

PATTERNS OF DEFORMED LINEATIONS 

The patterns of deformed Lt over F 2 can be classified 
into the following types, illustrated on the unrolled form 

surface of F 2 in Fig. 1. Excepting type 6, the ends of the 
lineation loci in Fig. 1 lie on the inflection lines of the 
folds. 

Type 1. L~ A F 2 
unrolled. 

is constant. The lineation can be 

Type 2. L~ /~ F2 is a minimum at the hinge and 
increases away from it on both limbs. The sense of 
curvature of L~ is opposite on the two limbs. 
(a) L1 A F2 does not become 90 ° anywhere. On the 
unrolled form surfaces the pattern of L~ shows a twofold 
rotation symmetry.  
(b) Ll A F2 does not become 90 ° anywhere and the 
lineation pattern does not show a rotation symmetry. 
(c) L~ A F2 changes through 90 ° on one limb only. 

Type 3. L~ /~ F2 increases from one line of inflection 
of the fold to the other  and maintains the same sense of 
curvature everywhere.  
(a) L1 A F 2 does not exceed 90 ° anywhere.  
(b) L1 A F 2 exceeds 90 ° on one limb. 

Type 4. L 1 A F 2 is 90 ° at the hinge only and shows a 
mirror symmetry about the hinge line on the unrolled 
form surface. The sense of curvature is the same 
everywhere.  

Type 5. Lt A F2 is a maximum at the hinge and 
decreases on ei ther side. The sense of curvature is 
opposite on the two limbs. 
(a) On the unrolled form surface there is a two-fold 
rotation symmetry.  
(b) On the unrolled form surface there is no rotation 
symmetry.  

Type 6, Complex patterns characterized by variable 
L1 A F2 along the fold axis. 

For a rigorous classification the lineation on the un- 
rolled form surface may be depicted as a curve y = f (x ) ,  
with y parallel to the hinge line and x perpendicular  to it 
(Fig. 1). The dissimilar patterns can then be classified on 
the basis of variation of Idy/dx t , dy/dx, d2y/dx 2, presence 
or absence of mirror symmetry or rotation symmetry 
and the occurrence of a stationary point. 

Among all these categories only the type 1 pattern 
shows a small circle locus on a stereoplot;  it gives a great 
circle distribution only when LI A F2 = 90 °. The majority 
of the other  types fall neither on small circles nor on 
great circles. Although we have noted in each case 
whether  a folded lineation lies on a plane or not, the 
following arguments show that this information need not 
be a basis for a classification of deformed lineation 
patterns. Although in many cases the patterns show an 
approximate great circle distribution, there are small but 
consistent deviations near the hinge zones of the folds. 
Only in a few cases did we find a consistent great circle 
distribution. Moreover ,  approximate great circle distri- 
bution patterns are often closely associated with other  
patterns in neighbouring outcrops. Hence the great 
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Fig. 1. Classification of lineation patterns on the unrolled form surface. The hinge line of F_, is along the y axis. 

circle pattern is not diagnostic for a particular fold 
mechanism. 

Among  the mesoscopic folds of Rajasthan,  the type 1 
pattern is common in the competent  units. In the less 
competent  rocks, type 2(b) is often seen. Types 3 and 4 
are fairly common in many localities. Both  types 5 and 6 
are rare. Some of the lineation patterns are shown in 
Figs. 2 and 3. 

The ten-fold classification of lineation patterns pre- 
sented here (Fig. 1) originated from our field observa- 
tions, in Rajasthan and elsewhere,  as well as from 
numerical calculations of the theoretical model  
described later. While striking differences among some 
of the natural examples were immediately apparent ,  it 
was the numerical modelling which emphasized the 
importance of classifying the lineation patterns on the 
basis of symmetry,  the presence of a stationary point or 
the presence of an inflection point (Fig. 1). Thus the 
numerical models showed us that symmetrical forms of 
type 2(a) or type 4 developed only under  very special 
situations. The model also emphasized the connected- 
ness of some of the patterns,  such as the transformation 
of 2(b) into 2(c) or 3(a) into 3(b) with progressive 
deformation.  

THEORETICAL MODEL 

General  

We have already shown that the mesoscopic folds 
observed by us are not shear folds and hence the linea- 
tions are not deformed by unequal slip along planes 
parallel to the axial plane. Moreover ,  it will be shown 
later that the type 4 pattern could have been produced 
only where L1 was initially at 90 ° to the ~ axis. Since 
even in this case the final pattern of lineation does not 
necessarily lie on a plane, we conclude that the folds are 
not parallel folds modified by flattening. It is therefore 
justified to start with the working hypothesis that the 
deformation of L1 was achieved by the combined effects 
of simultaneous external rotation and homogeneous  
strain. The importance of such a mechanism has been 
emphasized by several authors (Ramsay 1967, Hudles- 
ton 1973b, Hobbs et al. 1976) and is inherent in the 
models of buckle folding of Biot (1965) and Ramberg 
(1964). 

No doubt  the following analysis would have been very 
much simpler if we had chosen Hudleston's  (1973b) 
model of simultaneous buckling and flattening. How- 
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Fig. 2. Natural patterns of deformed Lt after unrolling F=. Dashed line, F: hinge; I.A. interlimb angle. Mesoscopic folds 
from Central Rajasthan. 

ever, although Hudleston's model has proved useful in 
the interpretation of plots of t~' against ~ for natural and 
experimental folds, it is not so suitable for our purpose 
of interpreting deformed lineation patterns, since the 
model is concerned with a special situation in which the 
orientation of the fold axis or the profile plane remains 
constant during progressive deformation. Moreover, in 
this model the rotation increments at a point of inflection 
remain constant at all stages of folding, and since the 
flattening increments are also constant, the ratio bet- 
ween the rates of rotation and flattening remains 
unchanged in progressive folding. Although the shape of 
the folded surface is not specified in Hudleston's model, 
his equations do impose certain constraints on the fold 
shape. Thus, if ds is taken as the arc-length of a small 
segment of the folded surface, his eqn. (4) implies that 
the curvature dodds remains constant all over the fold. In 
the extreme case of parallel folding, when the flattening 
increment is negligibly small in comparison with the 
rotation increments his eqn. (19) also implies that dams 
remains constant and the folded surface remains a circu- 
lar arc at all stages of folding. 

Our model is also idealized as all such models have to 
be; the necessity for simplification arises from our incom- 
plete knowledge about the mechanics of buckle folding 
at large amplitudes. Our model contains three assump- 
tions. (1) The central surface of the folded layer in 
transverse profile remains a sine curve at all stages of 
folding. (2) The ratio of the rates of buckle shortening 
(#~) and of layer-parallel homogeneous strain (#3) is 
given by the empirical relation 

with 

• t 

e3 _ A sin 2a. (la) 
#3 

Ab 
e ~ -  b '  (lb) 

where ~ is the dip angle (with reference to the hinge) of 
the fold at the point of inflection, b is the quarter 
wavelength and A is a constant dependent on the com- 
petence contrast of the associated rocks. (3) The pro- 
gressive deformation is coaxial with the Z-axis of bulk 
strain during F2-folding parallel to the planar segment of 
an early fold. 

The buckling equations of Ramberg (1964) show that 
the ratio of buckle-shortening to layer-parallel homo- 
geneous strain is proportional to the square of the 
amplitude-wavelength ratio. However, as stated by 
Ramberg, this relation is valid only for gentle sinusoidal 
folds. It is well-known that at large values of amplitude- 
wavelength ratios, the limbs tend to approach a 'locked 
position' and the ratio of the rates of buckle shortening 
to homogeneous strain is greatly reduced. Clearly we 
need an expression for this ratio which is zero when the 
layer is straight, reaches a maximum at some inter- 
mediate stage of folding and again vanishes when the 
fold tends to become isoclinal. These conditions are 
satisfied by our assumption that for small increments of 
bulk deformation, the ratio of the rates of buckle- 
shortening to homogeneous strain is proportional to 
sin 2ft. For steady deformation, we have from eqn. (la) 
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Fig. 3. (a) Type 4 pattern of deformed L t over F., hinge from Bhindar region, Rajasthan. (b) Profile section of same specimen 
showing folded axial surface of early isoclinal fold. The coin is nearly 2 em in diameter. 
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Fig. 4, Pat terns  of  deformed l ineations obta ined from the theoretical model  for A t ~ A.. Pat terns  are shown both in equal- 
area project ion (open circle, F_, axis; dots,  Li)  and on the  unrolled form surface. The  dashed lines are F2 hinges. The  fold is 
unrolled to a plane containing F 2 and Z axes. I = n u m b e r  of cycles of  incremental  strain. In (c), the value of A is 5; otherwise 
A = 2. Note  that the 2(b) pat tern in (e) changes  to a 2(c) pat tern in (f) and that  the 3(a) pat tern in (h) changes  to a 3(b) 
pat tern in (i) with progressive deformat ion.  A m o n g  type 4 pat terns ,  0 = 45 ° gives the m a x i m u m  curving of L~ for the same 

deformat ion.  The  very small variation in L~ /X F_~ in (c) is due to the  small value of O. 

&e .~ = A sin 2a .  Ae3. (2) 

Thus we assume that in successive small intervals of 
time, the incremental  shortenings along the Z-axis are 
successively Ae3 and Ae ~. If we keep Ae 3 constant,  as we 
have done in the numerical calculations, the buckle 
shortening increases from zero when the layer is straight 
to a maximum value of A A e  3 at an interlimb angle of 90 ° 
and then decreases with progressive tightening of the 
fold. The advantage of choosing a sine curve for the fold 
profile is that it remains a sine curve after an incremental  
homogeneous  strain. 

Our third assumption is not independent ;  it is indeed 
a corollary of the first assumption. The assumption of 
sinusoidal folding means that we consider only sym- 
metrical folds and hence the necessity of assuming a 
progressive coaxial deformation with the bedding paral- 
lel to the direction of maximum compression. It is 

merely a for tunate coincidence that in Central Rajas- 
than, the major  area of our  study, the bulk deformation 
during F2-folding can be interpreted to have been more 
or less coaxial. 

The  present  model  of simultaneous homogeneous  
strain and external rotation was approximated by 
repeated alternations of small increments of strain and 
rotation. We have chosen the coordinate axes xl,  x2 and 
x3 along X, Y and Z axes of bulk strain. We start with a 
planar structure (S) parallel to x3. Its trace (F) on the 
xtx2-plane makes an initial angle 0 with the xl axis. A 
lineation (L) makes an angle (P) with F. The successive 
stages of deformation considered in the model are sum- 
marized below. (1) Initial stage: during this stage the 
initial plane and lineation undergo a change in orienta- 
tion by an initial homogeneous  strain (step 1). This is 
followed by a stage of initial buckling (step 2) through a 
small angle. In the numerical calculations this rotation 
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generally produced by the change from one pattern to another with progressive deformation. 

was 1 ° for each limb. Thus,  we start  with an initial folded 
surface which in the profile plane is a sine curve dipping 
1 ° on ei ther  side at the points of  inflection. (2) Main 
stage: this consists of  repea ted  al ternations of  incremen- 
tal homogeneous  strain (step 3) and incremental  buck- 
ling (step 4). A sine curve in the profile plane remains a 
sine curve during the homogeneous  strain. The length of 
arc of the sine curve changes during an increment  of  
homogeneous  strain but remains unal tered during an 
increment  of  buckle shortening. We have presented the 
mathemat ica l  deve lopment  of  the model  through eqns. 
(3)-(35) in the Appendix  and the or ientat ion of F and 
those of S and L at different points of the fold are traced 
through the successive increments  of flattening and 
buckling. 

In natural  folds in layers with sufficient competence  
contrasts,  the buckling and flattening are strictly simul- 
taneous,  and the instantaneous strain is inhomogeneous  
over  a folded surface. On the other  hand, the al ternation 
of small increments  of buckling and homogeneous  
flattening in our  model  is an artifice to approximate  
s imultaneous buckling and flattening; hence instan- 
taneous strain distribution over  the fold is not relevant  
for our model .  Rather ,  we have to consider the strain 
distribution over  a small interval consisting of a few 
cycles of steps 3 and 4 of our  model ,  provided each of 
these steps is sufficiently small. Over  such a small 
interval the strain in our model  will be inhomogeneous  
along a folded surface. Moreover ,  over  such intervals, 
the local deformat ions  in the fold-limbs will be non- 
coaxial. Nevertheless,  the inhomogeneous  strain distri- 

bution in natural  folds is likely to be more  complex than 
in our idealized model.  While applying the theoretical 
results to actual field examples  we should therefore  
avoid interpretat ions based on small differences in linea- 
tion patterns.  

Numerical calculations 

The numerical  calculations were done using a com- 
puter ,  af ter  the first two steps, by repeat ing 200 times 
each cycle consisting of steps 3 and 4, the output  data of 
each cycle being taken as the initial data of the .next 
cycle. The computat ions  were done with three values of 
A, namely 0.5, 2 and 5. It may be recalled that increasing 
values of A means increasing competence  contrasts. The 
three values chosen here represent  modera te ly  low, 
fairly high and very high competence  contrasts. For each 
A, the angle (~)  be tween the x~ axis and the trace of S(01 
on the xtx2-plane was chosen as 0, 5, 10, 20, 45, 70, 80, 
85 and 90 °. Again,  for each of these cases the initial angle 
Pro) be tween the lineation and the trace of S on the x~x2 
plane was chosen as 10, 30, 50, 60, 70, 80, 85 and 90 ° . 
Lastly for each case three types of  incremental  homo-  
geneous deformat ion  were chosen: (1) Ae 2 = 0,  (2) Ael 
= Ae2 and (3) Ael = 2Ae2. These three cases represent  
respectively the plane-strain type, the uniaxial oblate 
type and a flattening type of strain ellipsoid (Ramsay  
1967). For all these cases the initial homogeneous  strain 
along the x3-axis was - 0 . 1 ,  the initial external rotation 
was 1 ° on either side at each point of inflection and the 
incremental  homogeneous  strain A8 3 for each cycle was 
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-0.005.  The deformation was considered to be 
isochoric. In each case the direction cosines of S and L 
were computed at 11 points of the fold profile, including 
the hinge point, two inflection points and four inter- 
mediate points on either flank. To study the progressive 
change in lineation pattern, the output data for each case 
were obtained at 10, 50, 100 and 200 cycles of incre- 
mental deformations. 

The data were plotted in equal-area projections with 
the x3-axis vertical so that the fold axis would plot at the 
periphery and deviations from small and great circle 
patterns would be easy to recognize. In addition the 
deformed patterns of lineation on the unrolled form 
surface were reconstructed from the values of P at the 
eleven points on the fold profile (Fig. 4). The arc-length 
distances of each of these points were calculated from 
eqn. (33a). 

A convenient way of synthesizing this large volume of 
data is to plot the dissimilar lineation patterns with 
different symbols on a @-P(0) diagram (Fig. 5) in order to 
delineate approximately the separate or overlapping 
fields. It should be noted that Fig. 5 represents the cases 
in which A2 ~ h2. When h~ = A2 we get only two types of 
lineation pattern, that is type 1 when P(01 = 90° and type 
2(a) when 0 < P(0) < 90°. 

DEVELOPMENT OF DISSIMILAR LINEATION 
PATTERNS 

The present study is essentially concerned with linea- 
tions which cannot be unrolled; hence, we avoided very 
large values of A in the numerical calculations. As test 
cases we made only a few computations with A = 20. At  
such very large values of A the ratio of the rates of 
buckle-shortening to homogeneous strain remained very 
large till quite a mature stage of folding and the lineation 
pattern showed a small or negligible deviation from the 
type 1 pattern. A significant variation in L~ /~ F2 over 
the fold could be seen when the total shortening was very 
large. For moderate competence contrasts and A~ # A 2, 
a type 1 pattern may develop when P(0) or the initial 
angle between L~ and the F2 axis is equal to 90 ° while the 
F~ axis is parallel to either X o r  Y. When A~ = A2 and P(0) 
= 90 °. the type 1 pattern will form at all values of Vs. 

The maximum information about the controlling fac- 
tors is obtained from the type 4 lineation pattern. Pre- 
sumably its mirror symmetry can only develop under a 
restricted set of conditions: (i) with essentially coaxial 
bulk deformation during F2-folding, (ii) with P(0) = 90° 
and (iii) Z-axis always coinciding with L1 at the hinge of 
F2, (iv) while the F2 axis is parallel neither to X nor to Y 
and (v) A1 # A2. With other conditions remaining the 
same, the variation in L1/~ F2 over a fold would be 
greatest if the F2 axis was initially at 45 ° to X (Figs. 4j-l). 
At the point of inflection of a fold, L~ /~ F 2 would 
change very slowly with progressive deformation if the 
F2 axis was initially close to either X or Y (Fig. 6). Hence,  
unless the total shortening was exceptionally high, a 
strongly curved type 4 pattern would indicate that the F 2 
axis was initially neither close to X nor close to Y and 
that At >> A2. Nevertheless, a strongly curved type 4 
pattern on the unrolled form surface and with very low 
values of Lz /~/72 at the limbs (Fig. 3) does indicate that 
the stretching along the fold axis is quite large and that in 
its final position F2 makes a small angle with X. 

The type 2(a) pattern also develops under rather 
restricted conditions. Its rotational symmetry generally 
develops when 0 < P(0) < 90° and the two limbs of the 
fold are symmetrically oriented with respect to the prin- 
cipal axes of bulk strain. This implies that the bulk 
deformation is coaxial, with F 2 parallel to either X or Y 
(Figs. 4a & b and 5). In certain cases L1 at the hinge 
makes a small or moderate angle with the F 2 axis while 
on the limb L~ is nearly at right angles to the ~ axis. Such 
a pattern can develop only if the F2 axis is parallel to Y 
and hi "> A2. When AI = h2, the 2(a) pattern can develop 
at all values of $. 

The type 2(b) pattern forms under a wide range of ~b 
and P(0) (Fig. 5). The asymmetry of the pattern is shown 
by dissimilar values of L1/k  F2 at the two inflection 
points of the fold. The 2(b) patterns which show small 
values of L1 /% F2 at both the hinge and the limbs (Fig. 
4c) develop when both ~b and P(0) are small. This particu- 
lar pattern does not change to other types with progres- 
sive deformation. Hence the occurrence of this pattern 
over tight folds indicates that the F 2 axis was close to X 
and that the initial angle between L1 and the F2 axis was 
small. 2(b) patterns as in Fig. 4(d) can develop only if the 
F: axis is initially close to Y. However, this pattern can 
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form in a wide range of P(0) but not at values close to 90 °. 
Nevertheless, if P(0) is small the pattern will not evolve 
into type 2(c), unless the total deformation is exception- 
ally high. In other situations, the 2(b) pattern which is 
most likely to be encountered is shown in Fig. 4(e), with 
small L t A F2 and a small curvature of L 1 on one limb 
and with large L~ A F2 and a large curvature of L~ on the 
other limb. These are the patterns which may commonly 
evolve into type 2(c) with progressive deformation 
(Fig. 4f). 

Types 3(a) and 3(b) patterns occupy a relatively small 
field in a ~k-P(0) diagram. They develop under the con- 
dition of very large P(0) (close to 90 °) and within a range 
of intermediate to large t#. Over this entire field a 3(a) 
pattern will change to 3(b) with progressive deformation 
(Figs. 4h & i); however a strongly bent 3(b) pattern 
would commonly develop when ~ has only intermediate 
values (Fig. 4i). Hence in areas where an exceptionally 
large deformation is not expected, the occurrence of a 
strongly curved 3(b) pattern on the unrolled form surface 
implies that P(0) was very close to 90 ° and the initial F2 
axis was neither close to X nor close to Y. 

Types 5 and 6 patterns did not develop in any situation 
of our theoretical models. They are also rather rare in 
nature. Excepting a single exposure in Jhamarkotra in 
Rajasthan, we did not find the type 5 pattern. Ramsay 
(1967, p. 464) interpreted this pattern by tangential 
longitudinal strain over the outer arc of a folded layer. 
Though rare, the type 6 pattern was found in some places 
in Central Rajasthan. The mode of development of this 
pattern is discussed separately. 

DEVELOPMENT OF COMPLEX LINEATION 
PATTERNS 

In the type 6 pattern (Fig. 7a), unlike other types, 
L t / ~  Fe does not remain constant along a line parallel to 
the fold axis. Such a pattern cannot develop according to 
our theoretical model in which the fold axis always lies 
on the XY plane and the rotating fold hinge continues to 
coincide with a single material line. In other situations, 
in which the enveloping sfirface is not parallel to any of 
the principal axes of strain or in situations of non-coaxial 
bulk deformation, the fold hinge may shift its position by 
sweeping through different material lines (Ramberg & 
Ghosh 1977, pp. 323-324). In such circumstances the 
successive positions of a fold hinge may or may not 
remain parallel. If the successive positions of the hinge 
do not remain parallel, Lm /~ F2 can vary not only at 
different values of the dip angle a but also along lines 
a = constant (Fig. 8). No doubt a type 6 pattern may 
also develop if Lt is initially curved, that is if F1 is initially 
non-cylindrical. However, there are certain geometrical 
peculiarities common to all the type 6 patterns observed 
by us in the Aravalli schists of Central Rajasthan. (1) 
They are clearly recognizable on tight or isoclinal F2- 
folds. While L t /~ F2 on such folds shows a wide range of 
variation (sometimes through more than 90 ° ) along lines 
parallel to the F2 axis in the neighbourhood of the hinge, 

L 

I I (c) 

Fig. 7. Some natural lineation patterns on unrolled form surfaces. (a) 
Complex pattern, Aravalli schist, Central Rajasthan. The F, fold is 
nearly isoclinal. Note that Ln /'~ F, is variable along the fold axis. 
Along the hinge (dashed line) the variation of L I /~ F ,  is m o r e  t h a n  90  °. 
(b) Dissimilar lineation patterns in congruent folds. Bhindar. Rajas- 
than. 3(b) pattern on a tight fold (right) and 3(a) pattern on an open 
subsidiary fold (left). (c) Strongly curved type 4 pattern on upright very 
tight fold (right) and much more gently curved 3(a) patterns on open 
congruent subsidiary folds (left) on one limb of the tight fold. Fuchsite 
quartzite about 6 km from Hosdurga on Ajjampur-Hosdurga road, 
Karnataka. (d) Curved lineation on essentially planar vertical foliation 
in amphibolites. Railway cutting, south of Jasidih railway station, 

Bihar. 

B D 

(el 
C 

Fig. 8. Development of type 6 pattern by rotation of hinge line through 
successive material lines. (a) Development of type 4 or 3(b) pattern 
with AB as hinge. (b) At a subsequent stage the geometrically defined 
new hinge line is CD. Earlier pattern is modified with Lt /~ F2 varying 
along lines parallel to CD. (c) Pattern of LL after the fold is unrolled 

around CD. 
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A [3 

(c) 

Fig. 9. Three alternative ways of developing curved lineations on 
essentially planar surfaces by (a) tightening of fold so that a curved 
segment of L~ is shifted from near hinge zone to limb, (b) shifting of 
hinge line parallel to itself during progressive increase in the asym- 
metry of fold and (c) flattening out of subsidiary folds on the limbs of a 

main fold during its progressive tightening. 

L~ /k ~ along the flanks of the folds is consistently small 
and shows a small range of variation. (2) The sense of 
closure of the curved lineation is always the same 
throughout  the unrolled form surface of any one of these 
folds in the mesoscopic scale. This would suggest that,  
for these examples, the type 6 pattern did not develop by 
folding of an initially curved L1. The occurrence of type 
6 patterns in the Aravalli schists would then imply that 
the planar segments of the isoclinal F I folds were locally 
strongly oblique to all the principal axes of strain during 
the F,-deformation.  

CURVED LINEATIONS ON PLANAR SURFACES 

of a limb (Fig. 9b). (3) A smaller congruent  fold on the 
limb of a larger fold may show a strong curvature near its 
hinge. If during the tightening of the larger fold, the 
smaller fold on the limb is unrolled or flattened out,  we 
may then obtain a strongly curved iineation on the 
flattened out limb of the larger fold (Fig. 9c). 

SEQUENCE OF SMALL AND LARGE FOLDS 

Congruent  small folds on limbs of larger folds are 
usually interpreted to have been initiated either at the 
same time as the larger fold or at a slightly earlier stage 
(Ramberg 1964, Ghosh 1968, pp. 226-228). Hence,  it 
came to us as a surprise when the lineation patterns in 
certain outcrops gave definite evidence that the smaller 
folds on the limbs were initiated when the larger fold was 
already quite mature.  In all such cases the early lineation 
deformed over a tight larger fold is strongly curved and 
of type 4 or type 3(b), indicating that the lineation 
initially made an angle of 90 ° or almost 90 ° with the later 
fold axis. The patterns of deformed lineations on the 
more open subsidiary folds on the same form surface 
indicate that the smaller folds were initiated when the 
angle between the lineation and the fold axis of the 
larger fold had been considerably reduced. That  is why 
the lineation on these subsidiary folds is weakly curved 
and of type 2(b) or 3(a) (Figs. 7b & c). In other  words the 
lineation of type 4 or 3(b) over  the larger fold must have 
had a fairly strong curvature,  and hence the fold must 
have acquired at least a moderately large amplitude, 
before  the congruent  subsidiary folds were initiated on 
its limb. A similar mechanism was proposed by 
Mukhopadhyay & Ghosh (1980, p. 73) to explain the 
simultaneous occurrence of different types of lineation 
patterns among the mesoscopic folds of an area. The 
mechanism of development  of such late subsidiary folds 
is not clearly understood.  The observations nevertheless 
do indicate that congruent  subsidiary folds may be 
initiated when the major  fold is already quite mature.  

In shear zones, a curved lineation on a planar surface 
may develop in a single deformation by a mechanism 
similar to that of sheath folding, as proposed by Ramsay 
(1980). From the foregoing analysis it is apparent  that in 
some other  situations a curved lineation on a more or 
less planar surface (Fig. 7d) may develop by any one of 
the following processes. (1) In all the patterns f rom types 
2-4. the lineation remains curved on the unrolled fold- 
limbs. With progressive deformation this curvature may 
be accentuated while the fold limb may gradually 
approach a more or less planar form. Since in all such 
cases, the maximum curvature of the deformed lineation 
will be fairly close to the hinge zone (Fig. 9a), this 
mechanism can give rise to a strongly curved L1 on the 
fold limb only if the deformation is exceptionally large. 
(2) However .  if the hinge line sweeps through different 
material lines, either parallel to earlier orientations or at 
an angle with them. a strongly curved pattern near an 
earlier hinge may later be shifted to the straight segment 

STRUCTURAL SIGNIFICANCE OF DEFORMED 
LINEATION PATTERNS IN CENTRAL 

RAJASTHAN 

We indicated earlier that in the Banded Gneissic 
Complex and the Aravalli rocks of Central Rajasthan 
the bulk deformation during F2-folding was essentially 
coaxial, with the Z-axis subhorizontal and having an 
E - E S E  trend. The occurrence of type 3(b) and type 4 
patterns of L1, along with the high angles between L1 
and F 2 in the majority of type 1 patterns,  indicate further 
that on average the F2 axis was initially nearly at right 
angles to L1. Hence L I must have been initially very 
close to Z. 

We can also have a rough idea about the plunge of the 
X-axis in the N-NNE-str iking subvertical axial surface 
of F_~. A review of the existing literature (Naha 1983) 
shows that in spite of a large range of plunge the majority 
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J 

(b) 

X 

Fig. 10. Sense of curvature  of  type 4 or type 3(b) pat terns.  (a) F2 
s teeper  than  X-axis of bulk strain. In this case the  deformed L~ shows 
a closure towards plunge direction over  an ant iform. (b) X-axis s teeper  

than  the F, axis. Defo rmed  L L closes against  plunge of  F 2 antiform. 

of F 2 hinges have a low to moderate  plunge to the N or S. 
Consider two alternative cases: (1) the plunge of the 
X-axis was gentler than that of the initial F2 axis and (2) 
X had a steeper plunge than the initial F 2 axis. In either 
case we would get a type 3(b) or 4 pattern of deformed 
LI if the initial angle between L~ and F 2 was close to 90 °. 
The numerical computations of our empirical model 
indicate that the sense of curvature of the deformed 
lineation would be different in the two cases. In the first 
case the closure of the bent Lt would be down the plunge 
of antiforms (Fig. 10a) and against the plunge of syn- 
forms. In the second case the closure would be against 
the plunge of antiforms (Fig. 10b) and towards the 
plunge of synforms. In all the cases where we found 
patterns of type 3(b) or type 4 in Central Rajasthan the 
closure of L~ was down the plunge of antiforms and 
against the plunge of synforms. Hence the X-axis of bulk 
strain must have had a gentler plunge than that of the 
initial F 2 axis. Moreover ,  since our  theoretical analysis 
has shown that under usual circumstances (i.e. if the 
deformation is not exceptionally large) a strongly curved 
type 3(b) or type 4 lineation cannot develop when the 
initial angle between X a n d  the F2 axis is close to 0 or 90 °, 
the X-axis must have made a moderately large angle 
with the initial F,. Hence the X-axis of bulk strain must 
have been either subhorizontal or gently plunging and 
with a N - N N E  trend. 

It is noteworthy that similar differences in the sense of 
curvature of the lineation patterns over antiforms and 
synforms were first interpreted by Hudleston (1973a, 
pp, 128-129) from the Monar  area of Scotland, and our 
interpretat ion,  following from the numerical models, is 
very similar to that given by him. 

SUMMARY AND CONCLUSIONS 

(1) All types of lineation patterns excepting types 5 
and 6 were obtained from the numerical solutions of the 

model of simultaneous buckling and flattening. How- 
ever, not all of them are equally informative. The results 
suggest that the 2(a) pattern is characteristic of progres- 
sive coaxial bulk deformation.  However ,  since in our 
model it formed under rather restricted situations, 
namely when the F, axis is parallel to either X or Y, or 
when At = A2, its occurrence is likely to be rare. The 2(b) 
pattern,  which develops under a wide range of ~ and Pu~ 
is fairly common. A 2(b) pattern can be useful in two 
cases. (i) If L1 A F2 is low at both the hinge and the limbs 
(Fig. 4c) we may conclude that both ~ and Pi0) were low. 
(ii) If LI A F2 is low at the hinge and rather high at the 
limbs (Fig. 4d), the pattern would indicate that the F, 

axis was initially close to Y. A strongly curved 2(c) 
pattern (Fig. 4f) develops only when ~ is moderately 
large and P(0) is large but not close to 90 °. The 3(a) 
pat tern develops over a wide range of ~ but is charac- 
teristic of situations with large values of P~0) (Fig. 4g). 
The presence of a strongly curved 3(b) pattern indicates 
that P(0) was close to 90 °, gJ had an intermediate value 
and A1 was considerably greater than A 2. 

(2) A type 4 pattern,  or a 3(b) pattern which closely 
approximates type 4, is fairly common in certain regions 
and has considerable structural importance.  The occur- 
rence of this type of lineation pattern indicates that the 
bulk deformation was essentially coaxial, the early linea- 
tion was initially almost perpendicular  to the late fold 
axis, the Z-axis of bulk strain during F2-folding was very 
close to the initial orientation of LI and that At was 
considerably greater  than A~. Moreover ,  from the 
occurrence of a strongly curved lineation on an unrolled 
form surface and from the sense of curvature of the 
lineation over antiforms and synforms, we can have an 
approximate idea about the orientation of the X-axis of 
bulk strain. In the majority of our natural examples 
where a type 4 pattern was observed,  the lineation did 
not lie on a plane. The occurrence of a type 4 pattern,  in 
such cases, is particularly informative since it implies 
that the late fold is neither a shear fold nor a parallel fold 
modified by flattening. 

(3) The lineation patterns in an area are often an 
association of different types. As pointed out by 
Mukhopadhyay & Ghosh (1980) such an association 
may occur because of the different amounts of initial 
homogeneous  strain undergone by rocks of different 
competences and/or because of the non-synchronous 
development  of small folds at different parts of a larger 
fold. In all such cases the dissimilar patterns developed 
because of the different values of L1 A F2 during the 
initiation of the folds. The present study indicates that 
dissimilar iineation patterns may also be associated 
because of a variation in the initial attitude of the F_, 
axis with respect to the bulk strain axes and because 
of a spatial variation in the intensity of deformation.  
With increasing deformation one lineation pattern 
may change over to another.  Hence with varying inten- 
sities of deformation the different members of each 
transitional series 2(b) ~ 2(c), 3(a) ~ 2(b) --~ 2(c) 
and 3(a) --~ 3(b) may occur in the same area. The 
occurrence of dissimilar lineation patterns on the 
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m a i n  fold  and  coax ia l  subs id i a ry  folds  of  a s ingle  fo rm 
sur face  is pa r t i cu l a r l y  s ignif icant  s ince  it e n a b l e s  us to 
d e t e r m i n e  the s e q u e n c e  of  fo ld ing  in a s ingle  p rog re s s ive  

d e f o r m a t i o n .  
(4) T h e  effect  of  t angen t i a l  l ong i tud ina l  s t ra in  was 

d i s r e g a r d e d  in ou r  t h e o r e t i c a l  m o d e l .  H e n c e  the  resu l t s  
of  the  p r e s e n t  ana lys i s  a re  va l id  w h e n  the  h o m o g e n e o u s  
s t ra in  is l a rge  in c o m p a r i s o n  wi th  the  t angen t i a l  longi-  
tud ina l  s t ra in .  A d e f o r m e d  l i nea t i on  on  a fo ld  p r o d u c e d  
by  t angen t i a l  l ong i tud ina l  s t ra in  will t end  to fo rm a 2(a)  
p a t t e r n  on  the  i nne r  sur face  and  5(a)  p a t t e r n  on  the  
o u t e r  su r face  of  a f o l d e d  l ayer .  S ince  5(a)  and  5(b)  
p a t t e r n s  a re  ve ry  r a re ly  o b s e r v e d  a m o n g  na tu r a l  ex-  

a m p l e s ,  we sugges t  tha t  the  va r i a t i on  in L 1 / ~  Fz 
p r o d u c e d  by  t angen t i a l  l ong i t ud ina l  s t ra in  is r a t h e r  
smal l ,  so tha t  it e i t he r  r e m a i n s  u n n o t i c e d  o r  is eas i ly  
m a s k e d  by  the  l a rge r  c o n t r i b u t i o n  of  h o m o g e n e o u s  
s t ra in .  

(5) In ou r  t h e o r e t i c a l  m o d e l  we a s s u m e d  tha t  (i) the  
f o l d e d  sur face  in t r an sve r se  prof i le  is r e p r e s e n t e d  by  a 
s ine  curve ,  (ii) the  bu lk  d e f o r m a t i o n  is coax ia l  and  (iii)  
the  l aye r  is in i t ia l ly  pa ra l l e l  to  the  Z - d i r e c t i o n  o f  bu lk  
s t ra in .  F o r  a s inuso ida l  fo ld  the  r a t i o  of  h inge  zone  to  
l imb b e c o m e s  ve ry  smal l  when  the  i n t e r l i m b  angle  o f  the  
fold  is g rea t ly  r e d u c e d .  A s  a c o n s e q u e n c e  the  g rea t e s t  
c h a n g e  in L 1 / ~  F:  t a k e s  p l ace  wi th in  a ve ry  n a r r o w  zone  
n e a r  the  h inge  l ine,  I f  a non - s inuso ida l  F2-fold is nea r ly  
i soc l ina l  bu t  has  a b r o a d  h inge  zone ,  the  l i nea t ion  o f  the  
u n r o l l e d  fo rm surface  will be  less sha rp ly  b e n t  and  the  
p o i n t  of  m a x i m u m  c u r v a t u r e  will  no t  neces sa r i l y  l ie c lose  
to  the  hinge l ine;  o t h e r w i s e  the  t ype  o f  l i nea t ion  p a t t e r n  

will  be  the  s ame  as on a s inuso ida l ly  f o l d e d  sur face .  If  the  
s e c o n d  o r  the  th i rd  c o n d i t i o n  is no t  sa t i s f ied  the  fo ld  
l imbs  will no t  m a i n t a i n  s y m m e t r i c a l  o r i e n t a t i o n s  with 
r e spec t  to  the  p r inc ipa l  axes  of  bu lk  s t ra in  and  h e n c e  
p a t t e r n s  of  t ypes  2(a)  and  4 will  no t  d e v e l o p .  If  the  bu lk  
d e f o r m a t i o n  is coax ia l  bu t  the  l aye r  is at  a low angle  to  
the  Z-ax i s ,  the  f ields o f  d i s s imi la r  l i nea t ion  p a t t e r n s  will  

still  be  e s sen t i a l ly  the  s a m e  as shown  in Fig .  5, o r  on ly  
m ar g ina l l y  modi f i ed .  I t  is m o r e  difficult  to  p r ed i c t  the  
t y p e s  of  l i nea t ion  p a t t e r n  e x p e c t e d  in p r o g r e s s i v e  non-  
coax ia l  d e f o r m a t i o n .  H o w e v e r ,  for  non -coax i a l  de fo r -  
m a t i o n s  whose  i n s t a n t a n e o u s  c h a r a c t e r  does  n o t  change  
with  t i m e ,  a 3(b)  o r  2(c) p a t t e r n  will  d e v e l o p  on ly  when  
P(0~ is ve ry  large .  O n  the o t h e r  h a n d  a low va lue  of  P(0) 
will  g e n e r a l l y  give r ise to  2(b)  pa t t e rn s .  F u r t h e r ,  a t ype  6 
p a t t e r n  m a y  d e v e l o p  when  the  s e c o n d  or  the  th i rd  
cond i t i on  is no t  sat isf ied.  R e c o g n i t i o n  o f  this  p a t t e r n  is 
of  c o n s i d e r a b l e  t h e o r e t i c a l  i m p o r t a n c e ,  s ince it m a y  give 
us the  ra re  o p p o r t u n i t y  of  con f i rming  tha t  the  h inge  l ine  
of  a fo ld  r o t a t e d  t h r o u g h  success ive  m a t e r i a l  l ines  in the  
course  of  p rog re s s ive  d e f o r m a t i o n .  

(6) The  curv ing  of  an ear ly  l i nea t ion  on  a m o r e  o r  less 
p l a n a r  s e g m e n t  of  a fo l i a t ion  sur face  m a y  be  e x p l a i n e d  in 
d i f fe ren t  ways.  A l ikely  p roces s  is a shif t ing of  zones  of  
s t rong  va r i a t i on  of  L1 /~ F,  f r om the  h inge  zone  to  the  
e s sen t i a l ly  p l a n a r  s e g m e n t  of  a l imb ,  e i t he r  by  a p r o g r e s -  
sive t i gh t en ing  of  the  fold  or  by  a m i g r a t i o n  of  the  
g e o m e t r i c a l l y  de f ined  hinge line ove r  success ive  m a t e r i a l  
l ines.  
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APPENDIX 

Notation 

In the following analysis the planar structure, the early lineation and 
the later fold axis will be denoted by S, L and F, respectively, The angle 
between L and F will be denoted by P. In the undeformed state they 
will be represented by the subscript zero within parentheses while in 
the deformed state in successive increments (step 1, step 2, etc.) the 
corresponding entities will be designated by the subscripts 1, 2, etc. in 
parentheses. Thus, l~ls~i and l,L)i, (i = 1,2, 3), are the direction cosines 
of the S-pole and L at the points of inflection at step 1, l~ls~ and l~L~ ~ 
are the corresponding direction cosines at points intermediate between 
the inflection point and the hinge point and h~,_s)~ and h(zL~ ~ are the 
direction cosines of S and L at the hinge at step 2. a and a '  are the dip 
angles (with reference to the hinge) at the point of inflection and at an 
intermediate point. ~tcn~, and A, are the quadratic elongations during 
initial homogeneous strain and incremental homogeneous strain, 

SG 7:o-C 
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~3 

:x 2 

Fig. 11. Or ienta t ion  of S (stippled),  L and F with respect  to the  
coordinate  axes. P = L~/~ F~. tO = initial angle between x~ and F 2. 

Note  that/7,, lies on the x~x2-plane. 

respectively. We have chosen the  coordinate  axes x~, x2 and x 3 parallel 
to the X, Y and Z axes of  bulk strain during the deve lopment  of  the  
later fold. The  acute angle be tween the x~ axis and the  trace of St0) on 
the xlx2-plane will be designated by tO. a and b are the ampli tude and 
quar ter  wavelength  of the sine curve.  

Step [: initial homogeneous strain 

If P~o) is the angle between Lco) and the trace of S(o) on the x t x2-plane 
(Fig. 11), the direction cosines of  L(o ) are: 

- 1  
I(ot.lt - ~ [l(osnl~os)3 sin P~o) + l(os)2 cos P(o)], 

1 
/toe)2 = ~ [l(os)t COS P(o~ - l(os)3l(os)z sin P(o)], 

and 

I(0L) 3 = ~/1 -- I~0S) 3 sin P(0). (3) 

After  initial h o m o g e n e o u s  strain S(o) is changed to S(o. The  direction 
cosines of  its normal  are 

lfos),l ~ ll,s)i = , (4a) 
61 

where  

i=1 A(n)iJ ' 

and  the direction cosines of  L , )  are 

= I ( o L ) ~  
l~lL), , (5a) 

where  

2 I/2 

62 ~- [i=~l l(OL)iA(H)i] . (5b) 

The  direction cosines of  the fold axis will be given by those  of  the  trace 
of S(~) on the xtx2-plane 

ItlF) I = --l(ls)2 

los)t 
IOF)2 = ~ ,  

and 

lfl~-)3 = 0. (6)  

The angle between Lo) and FI~ ) is 

P(l, = cos-' [,=~ l~lL),l,,F)i]. (7) 

Step 2: initial buckling 

Structural elements at points o f  inflection. During  the initial buckling 
the planar  s egmen t  is de formed  into a cylindrical fold, with the middle 

~"--- - -  be . . . .  -'~ ~ . . . . . . .  b . . . . . . . . .  "~ 

Fig. 12. Trace of middle surface of folded layer on the profile plane. 
is parallel to the x 3 axis. a is the  dip angle at the point of inflection and 
or' is the  dip angle at a point  Q with ~:coordinate as bc. b is the quar ter  

wavelength.  

surface appearing as a sine curve on the profile plane.  If _ks is the 
amoun t  of  rotat ion at a point  Of inflection, the direction cosines of  the 
normal  to the tangent  at that  point and of the lineation are respectively 

l~2s~i = c,jllls):, (8) 

and 

l(2t li = c#lltt.)j, (9) 

with summat ion  over  the  repeated suffix. Here 

Cij = COS (As)t~i! + (1 -- COS Aa)l(iFfliw)! -- sin (Aot)eqkltlF) k (10) 

(Narayan 1968, p. 70) and tSi/and ei] k are respectively the Kronecker  
tensor  and the  al ternate tensor.  (6i/is 0 if i # j and is 1 if i = j. eqk = 0 if 
any two of i,j ,  k are equal,  e0k = 1 or - 1 depending  on whether  ijk is a 
cyclic or  anticyclic permuta t ion  of l ,  2, 3.) Positive and negative values 
of  As  give the or ientat ions of S(~ ) and L~t ~ at the two points of 
inflection. In the numerical  calculations Aa was taken as l and - 1 °. 
The  angle between the lineation and fold axis, as given by eqn. (7), 
remains  unchanged ,  so that P~2~ = Pit). 

Structural elements at points intermediate between the inflection and 
hinge points. The profile plane in our  theoretical model  always remains 
parallel to the  x3-axis. W e  have chosen the coordinate axes s c, ~ on this 
plane with ~ parallel to x3. The  trace of the folded middle surface of the 
layer is then  given by the equat ion 

= a sin (n~:) ( 11 ) 

where  n = 27r/4b, b being the quar ter  wavelength.  Let Q be a point on 
this curve after the stage of initial buckling (Fig. 12) and let its 
f -coordinate  on the profile plane be bc, so that  by varying the value of 
c between 1 and  0, we can locate any point on the fold profile. If a '  be 
the dip angle at Q, then  from eqn.  (1l)  we find 

tan a '  = dff = an cos (n~:). 
dE 

A t ~ ¢ = 0 ,  

Hence  

d~" _ tan (As)  = an. 
dE 

tan cg = tan (As)  c o s ( ~ c ) ,  (12) 

where  A s  is the  dip angle at the point of  inflection. To find the direction 
cos ines  o f  the  n o r m a l  to S at Q ,  w e  use an e q u a t i o n  s imi lar  to (6)  and  
obtain the following relations 

112s~ t = IItF~2X/1 - {112,;1~} 2, 

I;2Sl I = -I(IFI2V1 - {112,;13} 2, 

and 

1~2s)3 = +s in  a ' .  (13) 

The  direction cosines of LI21 at the same point are obtained by using 
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B \B  ~ ~ 2c 2 ~21 

a '  

/ 

\B* 

Fig. 13. Traces of B, B' and B" planes on the x~x2 plane. B is the 
geometrically defined profile plane of the fold at step 2. After  incre- 
mental  homogeneous  strain (step 3) the fold axis has changed to 
position Ft3 ~ while B has deformed as a material plane to B ' .  B" is the 
geometrically defined profile plane for Ft3). A point Q '  on the B'  plane 
is projected parallel to/;'(3 ) on B" plane. Here  0Q'  = ~', 0Q" = r,, = 

s r '  cos ( z Q ' 0 Q " )  = ~" sin (F~3)/~ B ' ) .  

r. U 

Fig. 14. The projection of the point Q '  on the B' plane (stippled) along 
the fold axis to Q" on the B" plane. The ~: coordinate of Q' is CD and 
that of Q" is C ' D ' .  CD = C ' D ' ,  so that the ~: coordinates of the two 
points are the same. BF = a' and A E  = a". Hence a" = BF sin (ZABF) .  

eqn. (3) after replacing l by l ' ,  Pt0) by P(2) and by replacing the subscript 
0 by the subscript 2 within parentheses.  For instance 

li2L) 3 = X/1 -- {112s)3} 2 sin Pt2), (14) 

where P(2) is given by eqn. (7) and by the relation Pc2) = Po). Note that 
at this stage the angle between the lineation and the fold axis is the 
same at all points, and 

Step 3: incremental homogeneous strain 

Structural elements at the points o f  inflection. Let Ae, be the incre- 
ment  of homogeneous  strain along x, and the principal quadratic 
elongations be A, = (1 + Ae~). 2 The direction cosines, los)i, of the 
normal to S are obtained from eqn. (4) by replacing los)~ by los)i, l(os) i 
by lt2s~, and Arm, by h,. The direction cosines of the lineation are 
similarly obtained from eqn. (5) by replacing l~lL)i by l(3L) i, I(OL~ i by ll2L) i 
and h~H), by Ag. The direction cosines of the fold axis are obtained from 
eqn. (6) by replacing l(~v) ~ by I(3F)i and l~ls) ~ by l(3s) i. The angle between 
the fold axis and the lineation at the pointsof inflection is given by the 
relation 

/'(3> = cos -~ [t(3L),. l~),] ,  (15) 

with summation over the repeated suffix i. 

Structural elements at points between the inflection and hinge points. 
Let F(2) be the fold axis at step 2. On its profile plane (say, plane B) the 
trace of the folded surface appears as a sine curve ~" = a sin (n~). During 
incremental homogeneous  strain F(z~ changes to F(3); its geometrically 
defined profile plane (say, plane B") would no longer coincide with the 
material plane B'  obtained by deformation of B (Fig. 13). It can be 
shown that the sine curve ~" = a sin (n.~) of plane B is deformed to a sine where 
curve r, = a '  sin (n '¢ ' )  on plane B ' ,  where a '  = aX/A and n'  = nIX~A3, 
A being the quadratic elongation along the trace of B'  on the x~x2 plane. 
Moreover ,  if the curve on B'  is projected along the fold axis on the 
profile plane B", it still remains a sine curve (" = a" sin (n"¢"), where and 
a" = a '  sin [F~3 ~ A B']  (Fig. 14), and n" = n ' .  Because of the 
incremental homogeneous  strain, the position of point Q (with s c- 
coordinate = bc) on the sine curve on plane B changes to Q '  (with the 
~:-coordinate b ' c ' )  on the B'  plane. Since b'/b = b'c' /bc = ~f¥3,  we 
have c' = c. Again, since Q '  is projected along the fold axis (Fig. 14) with 
on the B" plane, the ~:-coordinate of Q '  remains unchanged,  so that b" 
= b '  and c" = c ' .  Knowing the quarter  wavelength b" and the c-value 
(c"), we can now locate Q" on the profile plane. The dip angle at this 
point is found from eqn. (12) 

t a n a ' =  tan a . cos (2 .  c" ) .  (16) 

The direction cosines of the normal to the S-surface are given by 
relations similar to eqn. (13) 

1~3S) 3 = +sin a ' ,  

l i 3 s )  2 = -I(_~.VI - {113s)3} 2, 

li3s)! = I(3F)2V1 - {113S)3} 2. (17a) 

Alternatively, from eqn. (16) and from the relation 113s)3 = + sin ct', 
we may obtain l i3s)3 directly in terms of a 

= - (17b) 

] + tan 2 cr cos 2 c" 

The sign of l~3s)3 should be the same as that of l(3s~3. The direction 
cosines of L at Q" are obtained from eqn. (5) by replacing luL)i by l [3L)i, 
lt0t)i by l~2L) i and Arm i by Ai. The angle between the lineation and the 
fold axis at Q" is 

el3) = c°s-1 [li3L)il~3F)i]. (18) 

Structural elements at the hinge. The direction cosines h(3s~ ~ and ht3L~ ~ 
of S and L at the hinge are 

h(3s)i= ~h/~7 )~8 ' (19) 

Ai J ' 

h (3L) i  = 3 '  " (20) 

where h~s~, =- l(ls)~ and h ( i L )  i ~- l(1L) i and are obtained from eqns. (4) and 
(5). The angle between the fold axis and the lineation at the hinge is 
obtained from eqn. (18) by replacing l '  by h '  on the right-hand side. 
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Step 4: incremental buckling 

Structural elements at points o f  inflection. Our first objective at this 
stage is to determine the amount  of rigid rotation at the point of 
inflection of the fold when the wavelength of  the sine curve changes by 
a known small amount but while the length of arc remains constant.  
Let the fold profile at the end of  step 3 be represented by the equation 
~ = a sin (ns c) where n = 2~rl4b, b being the quarter wavelength. The 
arc-length of the sine curve is 

s = f i ~  1 +(d~]zd''\df] (21) 

With n~ = z. the integral can be represented as an elliptic integral: 

s ~ f :  k / 1 - k 2 s i n 2 z d z ' n  

where 

o r ,  

k "  -- a2n2 

I + aen 2 

1 
s = - ~ E(k, z), (22) 

n 

where E(k, z) is an elliptic integral of  the second kind (Hancock 1958, 
Dutta & Debnath  1965). Since dsr/ds ¢ = an cos (n~:), we have for the 
point of inflection ~¢ = 0, 

tan a -- an. (23a) 

Therefore,  

a 2n  2 
k 2 - - -  s i n  2 a .  

1 + a2n z 

Equation (22) can then be written as 

2bE(k, z) 
s - r r V ~  - k 2 

If I be the arc length over a quarter  wave, we have 

2bE 
l - - -  

~r lX/T-T~_ k z' 
where 

(23b) 

(24) 

(25) 

f 
~/2 

E =  k / 1 - k  2sin z z d z  
0 

and is called the complete elliptic integral of  the second kind. Since 
during the buckling increment the arclength remains unchanged, 

dl 
- -  = 0 .  ( 2 6 )  
dk 

From (25) and (26) we obtain: 

2 l~/i-Z-~- k2 b + + = 0  
~'(1-- k 2) ~ dk] ~ J  

or, when (1 -- k z) # 0, 

(1 k 2 ) 
b(E - K) + (1 - k2)E ~k + bEk = 0, (27) 

k 

since according to the propert ies of complete elliptic integrals (Dutta 
& Debnath 1965, p. 187), 

dE  E -  K 
dk k 

where K is the complete elliptic integral of the first kind (Hancock 
1958). Dividing both sides of eqn. (27) by b(1 - k 2) we obtain 

E db K -  E Ek 
b dk k 1 - k 2 

o r ,  

zab 
b 

,.Xk - (28) 
K - E Ek 

k 1 - k 2 

where 

~k = dk.~b.-- 
db 

Since a is the angle between the x3-axis and the S-surface at the point 
of inflection, and 1(35B is the cosine of the angle between the x3-axis and 
the normal to the S-surface, 

k = sin ~x = l(3s~'.,. (29) 

Therefore,  for the point of inflection of the fold, the rotation of the 
S-surface due to the buckling increment is 

Aot = sin -t (k + Ak) - sin -1 k (30) 

where Ak and k are given by eqns. (28) and (29), respectively. The 
values of E and K for a particular value of k can be obtained from a 
table of complete elliptical integrals (Spenceley & Spenceley 1947, 
Belyakov et al. 1965) or by series expansion (Peirce 1956, p. 72). The 
direction cosines of the S-pole and lineation are then 

and 

where,  as in eqn. (10), 

l(4s)i = c',l¢3s)i (31a) 

l(4L) i = C'jjl(3L)t, (31b) 

C'q = COS (Aot)~$i! + (1 -- COS Aot)l(3F)il(3F)j - -  s i n  (Aot)e#kl(3F)l~ (31c) 

with summation over the repeated suffix. Positive and negative values 
of Aa give the orientations of S and L at the two points of inflection of 
the fold. Note that at step 4 the orientation of the fold axis and the 
angle between the lineation and the fold axis remain unchanged, so that 

I( 4F) i = I(3F~ i (32a) 

and 

P(4) = P(3)" (32b) 

Structural elements at intermediate points. Let Qi and Q2 be the 
positions of a point  on the fold profile before and after the incremental 
buckling. Their ~-coordinates are respectively blc ~ and b2c 2. From 
eqns. (24) and (25) we find 

s E(k,  (rr/2)c) 
- (33a) 

l E 

Since s and l do not change during the buckling increment,  

E(k2, 0r/2)c2) _ E(kl ,  (~'/2)cl) (33b) 
E2 El 

where E~ and Ez are the complete elliptic integrals of the second kind 
corresponding to k~ and k2, respectively. Hence 

E(kz,  0r/2)cz) = E(kt ,  (rr/2)c~)Ez/El. (34) 

Since all quantities on the right-hand side of eqn. (34) are known and 
k2 is also known, it is theoretically possible to determine (rr/2)c2, the 
upper limit of the incomplete elliptic integral on the left-hand side. In 
practice E(k2, (rr/2)c) was expanded into a power series (Peirce 1956, 
p. 72) up to the eighth power of  c, and the sum of the series was 
repeatedly calculated by decreasing the value of c from that of c~ by a 
small amount successively, till the difference from the known value of 
E(k2, (rd2)c2) became negligibly small. The corresponding value of c 
was taken as c 2. After  obtaining c,,  the dip angle a '  at the point Q2 was 
obtained from the relation 

tan c~' = tan a .  cos [(rr/2)cz]. (35) 

The direction cosines of S are then obtained from (17a) and (17b) by 
replacing the subscripts (3S) by (4S) and (3F) by (4F). The direction 
cosines of L are given by equations similar to eqn. (3) after replacing l 
by l ' ,  P~0) by PI3) and the subscripts (0L) by (4L) and (0S) by (4S). PI3) 
is given by eqn. (18). 

The structural elements  at the hinge will have the same orientations 
as those in step 3. 


